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Full-Reference Image Quality Assessment by
Combining Features in Spatial and

Frequency Domains
Zhisen Tang , Yuanlin Zheng, Ke Gu , Member, IEEE, Kaiyang Liao, Wei Wang, and Miaomiao Yu

Abstract—Objective image quality assessment employs
mathematical and computational theory to objectively assess
the quality of output images based on the human visual
system (HVS). In this paper, a novel approach based on
multifeature extraction in the spatial and frequency domains is
proposed. We combine the gradient magnitude and phase con-
gruency maps to generate a local structure (LS) map, which can
perceive local structural distortions. The LS matches well with
HVS and highlights differences with details. For complex visual
information, such as texture and contrast sensitivity, we deploy
the log-Gabor filter, and spatial frequency, respectively, to effec-
tively capture their variations. Moreover, we employ the random
forest (RF) to overcome the limitations of existing pooling meth-
ods. Compared with support vector regression, RF can obtain
better prediction results. Extensive experimental results on the
five benchmark databases indicate that the proposed method
precedes all the state-of-the-art image quality assessment met-
rics in terms of prediction accuracy. In addition, the proposed
method is in compliance with the subjective evaluations.

Index Terms—Image quality assessment (IQA), log-Gabor fil-
ter, full-reference, contrast sensitivity function (CSF), random
forest (RF).

I. INTRODUCTION

W ITH the high-speed development of image processing
and communication systems, image quality assess-

ment (IQA) has played a significant role in plentiful visual
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signals applications [1], including image acquisition, compres-
sion, transmission, enhancement, and watermarking. Image
quality is inevitably affected by a variety of distortions that
degrade the perceived visual quality in the above processes.
Therefore, accurately measuring visual quality is very impor-
tant. Since humans are the ultimate receiver of visual signals,
it is an effective technique for judging image quality. However,
subjective assessment is time consuming, expensive and labo-
rious, and thus it is urgent to contrive objective image quality
assessment approaches that measure image quality automati-
cally. These approaches must maintain consistency with the
human visual system (HVS). These objective image quality
assessment metrics can be widely applied to image monitor-
ing systems and parameters optimization in image processing
algorithms [2].

On the basis of the degree of availability of refer-
ence image information, objective IQA can be divided into
three categories: full reference (FR) [3]–[5], reduced refer-
ence (RR) [6], [7], and no reference (NR) [8]–[12] methods.
This paper only discusses the topic of full reference image
quality assessment. The FR-IQA models include a wide range
of real applications. The main two applications are provided
as follows.

First, a well-designed FR-IQA model can be used for opti-
mizing the coding technologies [52]. The second application
of FR-IQA models, as noted in several recently proposed
studies [53], [54], can be deployed as weak supervision for
learning robust NR-IQA models.

The development processes for FR-IQA, peak signal-to-
noise ratio (PSNR) and mean-squared error (MSE) are the
earliest and most widely used algorithms; they measure the
intensity change between pixels. Although these two methods
have low complexity, they are not well aligned with sub-
jective perceptions of visual quality, i.e., the Human Visual
System (HVS). Thus, the vast majority of algorithms based
on the HVS have been put forward recently. Structural sim-
ilarity (SSIM) [13] is a milestone in many algorithms based
on HVS; it predicts visual quality by capturing changes in
luminance, contrast, and structural information. Meanwhile, its
extended versions, namely, multiscale SSIM (MSSIM) [14],
measures structural information by embedding multiscale
space in an image. Information content weighted SSIM (IW-
SSIM) [15] improves image quality prediction by introducing
weighted local information. Information theoretic approaches
address the IQA problem from the perspective of information
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communication and the amount of information shared within
the reference image and the distorted image. In [16] and its
extended version, visual information fidelity (VIF) [17] quanti-
fies the information of the reference image and then compares
how much information similar to this is available in a dis-
torted image. Most apparent distortion (MAD) [18] considers
the image distortions to be classified as near-threshold and
supra-threshold; the MAD uses two quality indexes to obtain
the overall image quality score.

Many studies [13], [19]–[21] show that the HVS is strongly
sensitive to the structural information in an image. Gradient
similarity measure (GSM) [20] captures image quality by
combining gradient and luminance information. Supposing
that the HVS is susceptible to the low-level features in the
image, feature-similarity (FSIM) [21] uses gradient magni-
tude (GM) and phase congruency (PC) features as com-
plementary aspects. Similarly, in visual saliency-induced
index (VSI) [22], visual saliency (VS) and GM are utilized
to measure the distortion degree. Unlike the average pooling
in SSIM, the GSM, FSIM, and VSI use a weighting func-
tion to improve IQA accuracy to some extent, but it may
increase algorithmic complexity. Hence, gradient magnitude
similarity deviation (GMSD) [23] only calculates the GM sim-
ilarity of a reference image and the corresponding distorted
image and then utilizes the standard deviation of GM sim-
ilarity as the quality score. The GMSD [23] is much faster
than the algorithms mentioned above, but it cannot measure
color image quality. In addition, it is not enough for GMSD,
FSIM and VSI to describe image structural information by
using GM, PC and VS, respectively. At the same time, one
common shortcoming is that the prediction accuracies of these
methods are too low. To overcome the above problems, the
proposed algorithm captures the image structure by combining
spatial and frequency domain features; i.e., gradient magni-
tude, phase congruency and texture features are computed as
structural information. The FSIM introduces two feature maps
to describe structure in images. Compared with the FSIM, the
proposed method, which is motivated by a previous work [11],
combines the GM and PC maps to obtain a localized edge
map. Although [11] is a NR-IQA model that can only be used
to evaluate blurred images, the localized edge map proposed
by [11] is also applied to the FR-IQA model. Considering tex-
ture as important structural information, the Log-Gabor filter,
which agrees with the HVS, characterizes textural information.
Meanwhile, this paper employs three features to simulate con-
trast sensitivity changes of HVS that have different sensitivities
to distortion depending on spatial frequency [24]. Details can
be found in Sections II and III.

This paper makes two contributions. 1) We consider the
properties of HVS in spatial and frequency domains, and
depict image quality by multiple complementary features in
spatial and frequency domains. We overcome the common
limitation of most existing FR-IQA models that only ana-
lyze image quality from spatial or frequency domain. We use
these features include GM and color information in the spa-
tial domain, texture energy maps extracted from log-Gabor
features and a descriptor of contrast sensitivity information
in the frequency domain; 2) The learning-based scheme, i.e.,

random forest (RF) is adopted for the distortion effects pool-
ing. Human vision knowledge toward IQA is incorporated into
the process of distortion pooling with the help of RF. RF-based
pooling technique has the ability to overcome conventional
pooling limitation (summation or multiplication operation may
cause the relationship between the distortions and the qual-
ity score to be linear in the conventional pooling strategies).
Compared with other state-of-the-art models, our experiments
prove the effectiveness and robustness of our approach across
various databases; and it correlates well with the subjective
evaluations.

The rest of this paper is organized as follows. Section II
briefly reviews two-stage frameworks in existing FR-
IQA approaches and describes the related schemes of this
paper. The details of the proposed model are presented
in Section III. Experiments and analysis are presented in
Section IV. Finally, conclusions are presented in Section V.

II. RELATED WORK

In general, these existing FR-IQA models are typically made
up of two-stage frameworks. The first stage is to measure
the local distortions and calculate similarity, and the second
stage (pooling strategy) is to convert the local similarity maps
into the final quality score. This section briefly summarizes
structural feature extraction and pooling strategies of exist-
ing FR-IQA approaches and presents the related schemes of
this paper.

As depicted above, the gradient has the ability to reflect
structure and contrast change. In the first stage, the gradient is
usually used to measure the structural information in the spa-
tial domain. At the same time, it is not enough to express
the structural information strictly in terms of the gradient.
Therefore, the FSIM [21] introduces phase congruency (PC)
in the frequency domain to act as a complementary feature.
As shown in Fig. 1, Fig. 1(b)-(c) are the GM and PC maps
of reference image (a), respectively. Unfortunately, FSIM can-
not completely represent the image structure information with
only one structure map. Inspired by a previous work [11], we
combine the normalized GM and PC maps to obtain a local-
ized structure map (LS) that can perceive local structural
distortions.

In other words, Fig. 1(b)-(c) are replaced by Fig. 1(d), which
combines the advantages of Fig. 1(b)-(c). It can be seen from
the red square area in Fig. 1(b) that the edge of the tower
cannot be accurately captured because both sides of the edge
of the tower have similar luminance (white cloud and white
tower). At this point, PC is able to extract the edge of the tower
well, as observed from Fig. 1(c). On the other hand, the blue
and yellow square areas in Fig. 1(b), the structures of the house
wall and fences can be captured by GM in the spatial domain.
In this regard, it is difficult for PC to extract structures because
the blue and yellow square areas of Fig. 1(c) have similar
frequency behaviors. The local structure (LS) map addresses
the above issues. It uses GM and PC features as two comple-
mentary aspects of HVS to maximally combine GM and PC
so that it can represent the structures comprehensively.
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Fig. 1. Illustration of the reference image and its GM, PC and LS maps. (a) Reference image, (b) GM map, (c) PC map, (d) LS map.

The second stage (pooling strategy) is to convert these single
quality scores into the final quality score. The pooling strate-
gies of existing approaches are generally based on average
pooling [13], [14] and weighted pooling [15], [25], [26]. From
the perspective of average pooling, all regions of the image are
treated as having the same importance. In fact, these differ-
ent regions contribute differently to perceptual visual quality.
In [21] and [22], PC and VS are used as weight functions to
embody the significance of local regions in the image, respec-
tively. Percentile pooling [27] was also proposed to improve
algorithmic accuracy to some extent. Furthermore, standard
deviation pooling was successfully applied to [23] and [28];
GMSD [23] is one of the most typical examples with low
complexity.

Regrettably, the above pooling strategies fuse different
distortion factors by summations or multiplications, which
depend on appropriate weighting coefficients, and there is no
universal approach available for this. Meanwhile, a summa-
tion or multiplication operation may cause the relationship
between the distortions and the image quality score to be lin-
ear. In other words, such pooling strategies seem to be ad-hoc
with limited theoretical grounds. Fortunately, pooling tech-
niques based on machine learning have the ability to address
these problems. A convolutional neural network (CNN)-based
model [50] is able to automatically predict the object quality
score by computing the difference in high-frequency relevance
information between the reference image and its distorted ver-
sion. Local linear model (LLM) [50] obtains higher prediction
accuracy than other methods on some databases. Because
non-negative matrix factorization (NMF) [33] can effectively
reflect high-level visual perception, it is used to measure image

degradation. In [33], the extreme learning machine (ELM)
is employed for fusing the distortion effects and subjec-
tive scores to predict object image quality. Compared with
other learning-based models (e.g., neural networks and sup-
port vector regression), ELM shows faster learning speed
in [33]. Moreover, support vector regression (SVR)-based
models [9], [10], [29], [31], [51] are widely used in the field
of image quality assessment. In [29], SVR is implemented
for synthesis of multiple distortion effects and mapping sim-
ilarity vectors into a quality score. Similarly, SVR is used
to regress distortion effects that are represented by singu-
lar vectors in [31]. To overcome the limitations of a single
approach, multi-method fusion (MMF) [51] combines multiple
object image quality models using SVR. Although the overall
performance of this model is not bad, there is no single model
that performs well on all databases. For CNN and SVR, some
additional parameters (e.g., convolution layers/kernels, pool-
ing/fully connected layers in CNN [34], kernel parameters γ

and C in SVR [31].) need to be tuned, and this induces heavy
computation.

In order to solve the problems above, we use random
forests (RF) [40] to deduce a mathematical function to sim-
ulate the relationship between distortion factors and image
quality. Because there are only two parameters in RF, the
parameters are set by default. In addition, the RF regres-
sion algorithm is composed of a multitude of regression trees,
which is simple and easily parallelized. RF has shown promi-
nent capability of precise mapping functions in IQA [32]. It
has been proved that the RF regression significantly surpasses
SVR in [32]. This is why we choose RF as a regression
tool instead of SVR in this paper (in fact, we find that the
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Fig. 2. The flow chart of the proposed algorithm.

performance of RF notably outperforms SVR). Furthermore,
the performance comparison of RF and SVR is also shown in
Section IV.

It is well known that HVS is highly adapted for extracting
structural information from nature scenes and has the multi-
scale, multi-direction, masking effect and band-pass properties
of contrast sensitivity. These properties of HVS are reflected
in the form of spatial and frequency domains. Most of the
existing FR-IQA models [13]–[17], [20], [23] have a common
limitation that only analyze image quality from the spatial or
frequency domain. Because the properties of HVS are not fully
considered in the spatial-frequency domain, the results pre-
dicted by these methods are far less than ideal. We combine
existing approaches [11], [24], [29] to overcome the limitations
of a single approach in this paper. Namely, GM in the spa-
tial domain, the PC, texture, and spatial frequency features in
the frequency domain are employed to describe the properties
of HVS.

III. PROPOSED METHOD

A novel FR-IQA scheme by combining spatial and
frequency domain features is proposed in this paper, referred
to as the perceptual feature similarity index (PFSI). Before

the extraction GM, PC, texture and spatial frequency fea-
tures, the input RGB color images are converted into the YIQ
space [35]. It is noteworthy that the GM, PC, texture and
spatial frequency features are extracted from the luminance
channel. Specifically, texture and spatial frequency features are
extracted using log-Gabor and discrete cosine transform (DCT)
coefficients in a 4 × 4 DCT block, respectively. Then, the
image color similarity is measured in the I and Q channels.
Finally, RF is employed as a regression tool fusing similarity
vectors and mean opinion scores (MOS) to predict the final
quality score. The flow chart of the proposed algorithm is
exhibited in Fig. 2. Note that the f 1 and f 2 mentioned in this
paper represent the reference image and the distorted image,
respectively.

A. Phase Congruency (PC) Extraction From Frequency
Domain

Psychophysical and physiological studies have affirmed
that the various feature points can be detected by phase
congruency (PC). The main principle of the scheme is the fol-
lowing: The visual features correspond to those points where
the Fourier components are maximal in phase [36], [37].
Moreover, PC is dimensionless and is thus insensitive to
the contrast and brightness information. Therefore, PC is
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Fig. 3. Illustration of the original image and its phase congruency and gradient magnitude maps. (a)-(e) original images with different image content,
(f)-(j) PC maps extracted from (a)-(e), respectively. The GM maps of (a)-(e) are shown in (k)-(o), respectively.

employed as a feature detector in [11], [21], and [38].
This paper utilizes the method proposed by [37] to calculate
PC. The calculation process is as follows.

To obtain PC information in 2-D, Gaussian [37] is employed
as the spreading function to extend log-Gabor filters from 1-
D to 2-D. And then, the 2-D log-Gabor function is given the
following transfer function:
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where ωo is the center frequency of the filter, and σr controls
the bandwidth of the filter. θj = jπ/J, j = {0, 1, . . . , J − 1}
is the orientation angle of the filter, J denotes the number of
orientations, and σθ determines the angular bandwidth of the
filter.

Mo
n,θj

and Me
n,θj

show the odd- and even-symmetric filters
of the 2-D log-Gabor filters on scale n and orientation θj. By
regulating these parameters in Eq. (1) and convolving the input
image with G2, a set of the responses are generated at each
point x as [en,θj(x), on,θj(x)], where on,θj(x) and en,θj(x) denote
responses of the even- and odd-symmetric filters. Then, the
local amplitude on scale n and orientation θj is computed as

An,θj(x) =
√

en,θj(x)
2 + on,θj(x)

2 (2)

the local energy with θj is defined as

Eθj(x) =
√

Fθj(x)
2 + Hθj(x)

2 (3)

where Fθj(x) = ∑
nen, θj(x) and Hθj(x) = ∑

nen, θj(x).
Finally, the 2-D PC at x is calculated as:

PC(x) =
∑

j Eθj(x)

λ +∑
n
∑

j An,θj(x)
(4)

where λ is a positive constant to maintain the fraction stabil-
ity. Take the Fig. 3(f)-(j) as an example of PC information;

Fig. 3(f)-(j) are PC maps extracted from original images in
Fig. 3(a)-(e), respectively. As can be seen, the PC map is able
to reflect the main contour information of the image.

B. Gradient Magnitude Extraction From the Spatial Domain

Edge is able to convey the important visual information. The
gradient is widely used in the field of image quality assess-
ment [13], [19], [20], [23] since it has the ability to capture
structure and contrast changes. And the gradient magnitude
map can be represented by horizontal and vertical components,
which are calculated by convolving the input image with an
edge detector. The famous Prewitt filter [39] is utilized in this
paper because it possesses the lowest computational complex-
ity. The horizontal and vertical components of GM map are
defined as:

Gx(x) = 1

3

⎡

⎣
1 0 −1
1 0 −1
1 0 −1

⎤

⎦ ∗ f (x)

Gy(x) = 1

3

⎡

⎣
1 1 1
0 0 0

−1 −1 −1

⎤

⎦ ∗ f (x) (5)

where Gx(x) and Gy(x) denote the horizontal and vertical GM
maps, respectively, and “∗” is the convolving filter. The f (x)
denotes an input image. And then, the GM of an input image is
computed as G(x) =

√
G2

x
(x) + G2

y(x). As exhibited in Fig. 3
(k)-(o), the GM maps are extracted from Fig. 3(a)-(e). The
structural information in the original image can be presented
by the GM map.

Actually, HVS tends to pay more attention to the strong
edges in the image. As depicted in Section II, PC and GM
maps have their own merits in different image regions. To
obtain strong edges (i.e., localized structure map) in different
image regions, we combine the normalized GM values and PC
information to emphasize the edges. So, the localized structure
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map (LS) is defined as:

LS(i, j) = max{GM(i, j)/GMmax, PC(i, j)} (6)

where (i, j) denotes each point in the LS, GM and PC maps.
That is to say, the LS map is computed by Eq. (6), which

highlights differences with details in an image. Since the PC
values are distributed from 0 to 1, GM values are normal-
ized to 0-1 by dividing the maximum value in the GM map.
The LS map can be seen from Fig. 1(d). In each position, the
larger value in the GM and PC maps is taken as the struc-
tural feature points. Therefore, the LS map is able to capture
structural information in the image thoroughly. Furthermore,
the local structure dissimilarity between f 1 and f 2 is defined
as correlation coefficient (CCLS):

CCLS(r, d) =
∑N

i=1(ri − r̄) · (d − d̄
)

√∑N
i=1(ri − r̄)2 ·∑N

i=1

(
di − d̄

)2
(7)

where ri and di are pixels in LS maps of f 1 and f 2, respectively.
N denotes the number of pixels in an image. It is notewor-
thy that a higher CC value denotes higher similarity or better
image quality and vice versa.

C. Texture Feature Extraction in Frequency Domain and
Similarity Computation

Because of the simplicity of operation, PC and GM have
been widely employed as edge extraction tools to detect the
local structure in an image. Unfortunately, the complex HVS
cannot be simulated only with PC and GM. Satisfactory struc-
tures cannot be obtained from PC and GM maps alone. A great
deal of information that needs to be represented by complex
features still remains underused. It should be observed that
features like texture descriptor express information correlating
with HVS. Since the texture also exists in structural informa-
tion, this paper performs log-Gabor filter for extracting texture
features in the frequency domain.

The expression of the log-Gabor filter has been given by
Eq. (1); it is not difficult to see that two parameters inform the
log-Gabor filter, i.e., scale and orientation. This implies that
the log-Gabor filter has the attributes of orientation and multi-
scale, which is consistent with HVS. Therefore, we select the
log-Gabor filter to extract texture from an input signal. The
log-Gabor filter bank consists of four directions, which are 0◦,
45◦, 90◦, 135◦, and four scales in this paper. Specifically, the
window for the (s + 1)-th scale is twice as large as the s-th
scale. After filtering, an a × b image can be described by an
a × b complex matrix. Then, the energy map is given by

Ea,b(x, y) =
√(

Dr
a,b(x, y)

)2 +
(

Di
a,b(x, y)

)2
(8)

where Dr
a,b(x, Y) and Da,b(x, Y) are real and imaginary parts

of the complex matrix, respectively. The texture information
is represented by the energy maps that are generated from the
log-Gabor filter bank with four scales and four orientations.
Fig. 4 shows an original image and its energy maps. According
to Fig. 4, the noises are reduced, while the image loses more
detailed information with the larger scale.

Benefiting from the energy map, the a × b complex matrix
can be transformed into a real matrix of the same size. The tex-
ture similarity is represented by the chi-square distance of the
two real matrices obtained from the reference image and cor-
responding distorted one. The filters are divided into s (s = 1,
2, 3, 4) groups according to the number of scales. In addition,
there are four directions for each scale. Hence, the texture sim-
ilarity at the s-th scale is calculated as the chi-square distance
between two a × 4b real matrices,

χ2
s (ER, ED) = 1

4ab

4ab∑

i=1

(ER(i) − ED(i))2

ER(i) + ED(i)
(9)

where ER and ED denote energy maps at s-th scale of f 1 and f 2,
respectively. The indicator implies that the image with more
severe distortion has less similarity to its reference image.
After filtering, four similarity indicators can be obtained from
each image in this paper.

D. Spatial Frequency Feature Extraction and Dissimilarity
Computation

In fact, except structural information, contrast sensitiv-
ity function (CSF) plays a vitally important role in HVS
which has different sensitivities to distortions depending on
spatial frequency [24]. Therefore, we decide to employ the
subsequent three characteristics in the luminance channel to
simulate the CSF of HVS. These three similarity indica-
tors are expressed by comparing the contrast energy values
in low frequency (LF), middle frequency (MF) and high
frequency (HF) districts in 4 × 4 discrete cosine trans-
form (DCT) blocks. The contrast energy map in the LF region
extracted from an image is defined as [24]:

φL =
∑

(u,v)∈RL

p(u, v) (10)

where p(u, v) denotes the normalized magnitude of a DCT
coefficient at (u, v). RL is the LF region. Similarly, contrast
energy maps in MF and HF regions are calculated as:

φM =
∑

(u,v)∈RM

p(u, v) (11)

φH =
∑

(u,v)∈RH

p(u, v) (12)

Similar to SSIM, the similarity indicator has the form of
(2a · b + c)/(a2 + b2 + c). Therefore, the similarity indicator
in the LF region between the reference image and its distorted
one is defined as:

SL = 1

N

∑

(u,v)∈RL

2φRL · φDL + C1

φ2
RL + φ2

DL + C1
(13)

where φRL and φDL represent the contrast energy maps of f 1
and f 2 in the LF region, respectively. N denotes the number
of pixels in an image. C1 is a positive constant to maintain
the fraction stability. Similarly, similarity indicators in MF and
HF regions between f 1 and f 2 are defined as:

SM = 1

N

∑

(u,v)∈RM

2φRM · φDM + C2

φ2
RM + φ2

DM + C2
(14)
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Fig. 4. Texture information of an original image is obtained from a log-Gabor filter bank with four scales and four orientations.

SH = 1

N

∑

(u,v)∈RH

2φRH · φDH + C3

φ2
RH + φ2

DH + C3
(15)

where φRM and φDM denote the contrast energy maps of f 1
and f 2 in the MF region, respectively. φRH and φDM represent
the contrast energy maps of f 1 and f 2 in the HF region, respec-
tively. N denotes the number of pixels in the image. C2 and
C3 are two positive invariables to control numerical stability.

E. Chromatic Feature Extraction and Similarity Measure

It is common knowledge that color information can also
affect the visual quality in color images. Most of the existing
IQA algorithms just measure the image quality in the lumi-
nance channel, which overlooks the chrominance information.
Color information is not considered in the above features.
Consequently, we introduce a similarity indicator to reflect the
color distortions. For this purpose, an input RGB color image
is converted into the YIQ color space [35]:

⎡

⎣
Y
I
Q

⎤

⎦ =
⎡

⎣
0.299 0.587 0.114
0.596 −0.274 −0.322
0.211 −0.523 0.312

⎤

⎦

⎡

⎣
R
G
B

⎤

⎦ (16)

where Y denotes the luminance component, and Y and Q
represent chromatic components. In this paper, Y is used to

compute LS, texture and spatial frequency features. I and Q
are employed to capture color distortions between the f 1 and
f 2 as follows:

SI = 1

N

∑

x

2IR(x) · ID(x) + C4

I2
R(x) + I2

D(x) + C4
(17)

SQ = 1

N

∑

x

2QR(x) · QD(x) + C4

Q2
R(x) + Q2

D(x) + C4
(18)

SC = 1

N

∑

x

(
2IR(x) · ID(x) + C4

I2
R(x) + I2

D(x) + C4
· 2QR(x) · QD(x) + C4

Q2
R(x) + Q2

D(x) + C4

)

(19)

where x denotes the pixel of the image, IR, QR, ID and QD rep-
resent the chromatic components of the f 1 and f 2, respectively.
N denotes the number of pixels in an image. C4 is a positive
constant, which is of similar function to C1, C2, and C3.

F. Regression Tool

Machine learning has been extensively applied in
the domain of image quality assessment, such as ran-
dom forest (RF) [32], [40] and support vector regres-
sion (SVR) [29]–[31]. Regression tools are contained in these
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TABLE I
INFORMATION ABOUT FIVE PUBLIC DATABASES

learning-based techniques. We adopt RF to learn a mapping
from the feature vectors to quality score because the RF
regression distinctly outperforms SVR. The performance com-
parisons of random forest and support vector regression are in
Section IV.

After features extraction, a 9-D feature vector can be gener-
ated by the proposed method. In this paper, the feature vector
is represented by

f =
[
CCLS, χ

2
1 , χ2

2 , χ2
3 , χ2

4 , SL, SM, SH, SC

]
(20)

where the nine indicators have already been introduced
in Sections III-A–III-E, which contain local structure sim-
ilarity (CCLS), the texture dissimilarity at the four scale
(χ2

1 , χ2
2 , χ2

3 , χ2
4 ), the similarity between the contrast energy in

low frequency region (SL), the similarity between the contrast
energy maps in middle frequency region (SM), the simi-
larity between the contrast energy maps in high frequency
region (SH) and the chromaticity similarity (SC). A set
of 9-D feature vectors and MOS are employed to set up
a regression model in the training stage. In the test stage,
the feature vectors extracted from the testing dataset are
directly mapped to the quality scores through the learned
model.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Databases and Methods for Comparison

In this paper, the performance of the PFSI is tested on five
databases, including TID2013 [41], TID2008 [42], CSIQ [43],
LIVE [44] and CCID2014 [45]. Specifically, the contrast dis-
torted images of the CCID2014 database are also utilized
in the experiments. The information of these databases is
summarized in Table I.

To quantitatively describe the performance of the proposed
method, this paper employs four popular performance met-
rics, i.e., Pearson linear correlation coefficient (PLCC),
Spearman rank-order coefficient (SROCC), Kendall rank-
order correlation coefficient (KROCC) and root mean squared
error (RMSE). PLCC is used to represent the prediction
accuracy of a model, i.e., the ability to predict subjective eval-
uations with low error. RMSE is used to judge the prediction
consistency of a model. SROCC and KROCC are used to rep-
resent the prediction monotonicity of a model, i.e., the degree
to which subjective evaluations can be predicted. Furthermore,
we adopt the regression analysis method recommended by the
video quality experts group [46], which leads the objective
scores on the same scale as the subjective scores and pro-
vides a better fit for all data. The logistic regression function

is defined as [46]:

f (x) = β1

(
1

2
− 1

1 + eβ2(x−β3)

)
+ β4x + β5 (21)

where x denotes the raw predicted score, and f (x) is mapped
out. βi (i = 1, 2, 3, 4, 5) are the free parameters to be fit-
ted by minimizing the sum of squared differences f (x) and
MOS. The reference values of initial parameters are selected
based on the recommendation in [46]. The first metric is
the PLCC between the predicted scores and subjective MOS
after regression. Similar to PLCC, the fourth metric is the
RMSE between the predicted scores and subjective MOS after
regression.

Because the viewing distance is closely related to the
visual quality [47], like most of the previous FR-IQA mod-
els [13], [21]–[24], the process of down-sampling helps to
reduce computational complexity. Hence, images are down-
sampled by a factor of 2 using a local 2 × 2 average filter in
this paper.

This paper compares 12 state-of-the-art FR-IQA mod-
els, i.e., SSIM [13], IW-SSIM [15], FSIMC [21], GSM [20],
GMSD [23], IFS [48], VSI [22], DSCSI [49], PSIM [27],
DOG-SSIMC [32], MDSI [28] and SCQI [24] with the
proposed method in terms of prediction accuracy.

B. Cross Validation

Generally, some learning-based models [9], [29] randomly
divided images into two subsets in each database; i.e., 80% are
used for training and the remaining 20% are used for testing.
However, the testing data of these methods may contain the
same image content in the training data. Since the impact of
the image content in quality assessment is significant, it may
affect the accuracy of the prediction. Moreover, it is also not
advisable to use the identical dataset for training and testing.
This kind of model would lead to a perfect score but fail to
predict anything useful on unseen data.

The k-fold cross validation technique [31]–[33] is widely
applied to the validation of machine learning-based IQA mod-
els. This technique can effectively avoid the occurrence of
over-fitting and under-fitting. Therefore, we also adopt k-
fold cross validation to test the robustness of the PFSI. The
whole dataset is divided into k disjoint subsets, and the num-
ber of samples in each subset is equal or roughly equal.
Then, each subset is treated as testing data separately, and
the remaining (k-1) subsets are treated as training data. The
final result depends on the average performance of the k
test experiments. To obtain a more stable result, the process
of training-test is repeated 1000 times, and the median is
retained.

As mentioned above, the impact of image content in
quality assessment is significant. To this end, the train-
ing and testing subsets are separated by the image con-
tent in each database. Specifically, k is usually set as
5∼10 [31]. The TID2013 database is divided into eight sub-
sets according to the different image contents. Similarly, the
TID2008 database is divided into eight subsets, CSIQ is
divided into ten subsets, and LIVE is divided into ten subsets.
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TABLE II
PERFORMANCE COMPARISON OF 13 IQA MODELS ON FIVE DATABASES

TABLE III
PERFORMANCE COMPARISON OF 5 LEARNING-BASED IQA MODELS ON FOUR DATABASES

Information about the subsets classification can be found
in [33].

C. Overall Performance Evaluation

Table II shows the prediction performance of the PFSI
and the other 12 state-of-the-art IQA models on five public
image databases in terms of PLCC, SROCC, KROCC and
RMSE. Note that the best result is highlighted in boldface
for each database. To be fair, the training-test process of the
DOG-SSIMc [32] is the same as the proposed method.

Because image classification is critical to regression, we
adopt two schemes to prove the effectiveness of the proposed
method. One way is to classify images by content and per-
form k-fold cross validation as described in Section IV-B,
and the other is to randomly divide images into two sub-
sets in each database (80% for training, and the remaining

20% are used for testing). The performance of the former
is represented by PFSI and that of the latter by PFSI-R. As
can be seen from Table II, the predictive capability of the
PFSI/PFSI-R outperforms all the other methods by a large
margin on the five databases, i.e., TID2013, TID2008, CSIQ,
LIVE and CCID2014. Meanwhile, PFSI/PFSI-R almost attains
the best results every time among all methods and consis-
tent performance across the five databases. This means that
PFSI/PFSI-R is an effective model to reflect the informa-
tion processing of HVS for image quality perception. In
comparison, there is no other algorithm that can obtain the
best results on each database. Moreover, the PFSI/PFSI-R
can effectively predict the images with contrast distortion in
the CCID2014 database. If the database becomes larger, the
images in the testing data that contain the same content of the
training data will increase through random classification. For
this reason, PFSI-R surpasses PFSI in TID2013 database. The
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Fig. 5. Scatter plots of subjective scores versus predicted scores obtained by objective IQA models on the TID2013 database. (a) SSIM, (b) IW-SSIM,
(c) FSIM, (d) GSM, (e) IFS, (f) GMSD, (g) VSI, (h) MDSI (i) SCQI, (j) PSIM, (k) DOG-SSIMc and (l) PFSI.

overall performance is calculated by taking weighted averages
(W. A.) that depend on the numbers of distorted images. For
all the IQA models, their weighted-average PLCC, SROCC
and KROCC performances are given in Table II. Note that
PFSI/PFSI-R, which is largely superior to other models, con-
sistently achieves the best results on the average performance
comparison.

To further demonstrate the effectiveness of the proposed
method,the performance of PFSI indices will be compared
with four representative learning-based methods. The best
result is highlighted in boldface for each database. As tabu-
lated in Table III, PSFI outperforms all learning-based methods
on the TID2013, and CSIQ databases. On the TID2008 and
LIVE databases, the performance of the proposed method is
slightly worse than the best method. Note that no IQA model
performs very well on four databases except for proposed

method PFSI. For other learning-based models, they may work
well on some databases, but fail to provide good results on
other databases. For example, although LLM and [29] can
get good results on LIVE database, they perform poorly on
TID2013 and TID2008 databases.

In addition, Fig. 5 shows scatter plots of subjective
MOS values versus predicted quality scores for PFSI and
twelve representative IQA methods (SSIM, IW-SSIM, FSIM,
GSM, IFS, GMSD, VSI, MDSI, SCQI, PSIM and DOG-
SSIMc) along with the best fitting logistic functions on the
TID2013 database. The horizontal and vertical axis corre-
sponds to the object quality score and subjective MOS; each
point on the plot denotes one image in the database. The curves
(meaning perfect prediction) are obtained by a nonlinear fitting
according to Eq. (21). As can be seen from Fig. 5, these sample
points of PFSI tend to be clustered closer to the fitting curve
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TABLE IV
PERFORMANCE COMPARISON AMONG DIFFERENT REGRESSION TOOLS

compared to other scatter plots, and this implies a higher con-
sistency with the subjective scores. Specifically, PFSI is able
to acquire better performance for low-quality images. When
RF and SVR are used as regression tools, the predicted results
are listed in Table IV. Obviously, the predictive results using
RF as a regression tool on each database are better than those
using SVR.

In order to analyze the statistical significance of proposed
method PFSI in relative to the competing approaches, we
employ the left-tailed F-test to decide whether a metric is sta-
tistically superior to another index [23]. The F-test is based
on the residuals between the objective quality scores by
an IQA model after nonlinear regression and the subjective
scores. The results of significance tests are shown in Fig. 6.
A value of H = 1 for the left-tailed F-test at a significance
level of 0.05 represents that the first method (indicated by the
row in Fig. 6) is superior in IQA performance to the second
method (indicated by the column in Fig. 6) with a confidence
greater than 95%. A value H = 0 represents that first method is
not significantly better than the second one, i.e., the two meth-
ods have no significant difference in performance. Fig. 6(a-d)
shows the statistical significant results on TID2013, TID2008,
CSIQ and LIVE databases, respectively. It can be observed that
the performances of statistical significance tests are consistent
with the results displayed in Table II and Table III. The
proposed method PFSI is significantly better than all the other

TABLE V
PLCC VALUES OF CROSS DATABASE VALIDATION

WITH DIFFERENT METHODS

TABLE VI
AVERAGE ERUNNING TIME FOR DIFFERENT MODELS ON TID2013

methods on TID2013 and CSIQ databases. On TID2008 and
LIVE database, PFSI, CD-MMF and DOG-SSIMc all perform
very well and they have no significant difference. Note that no
IQA metric performs significantly better than proposed model
PFSI on four databases. In other words, the overall statistical
performance of the proposed method PFSI is the best.

D. Cross Database Validation

To comprehensively analyze the robustness and general-
ity of the PFSI, cross database validation is conducted. We
adopt a database to train the regression model and the test-
ing process on another database. Ideal cross validation implies
that the databases of training and testing are absolutely non-
overlapping. Because the same images exist in TID2013,
TID2008, and LIVE, this paper employs CSIQ as the training
or testing database and the TID2008 and LIVE databases act
another role in turn. Table V records the experimental results
in terms of PLCC, the best result produced by a train-test
is highlighted in boldface. In fact, similar results can also
be obtained by using SROCC, KROCC and RMSE. As can
be seen in Table V, for all training models on any database,
the PFSI far surpasses the other state-of-the-art methods. For
instance, when the LIVE and TID2008 databases are used to
train the regression model, the test results obtained by the
CSIQ database are 0.9376 and 0.9471, respectively. On the
other hand, the CSIQ database is employed as a training tar-
get; the test results are 0.9243 and 0.8902 on the LIVE and
TID2008 databases, respectively.

E. Computational Complexity

Table VI lists the average running time of each image on
the TID2013 database, which contains 3000 images of size
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Fig. 6. The results of statistical significance tests of the competing IQA methods on the databases of (a) TID2013, (b) TID2008, (c) CSIQ and (d) LIVE.
A value of ‘1’ (highlighted in red) means that the method in the row is significantly better than the method in the column, while a value of ‘0’ (highlighted
in green) means the first method is not significantly better than the second method.

512 × 384. All approaches are executed on a 3.60 GHz Intel
Core i7-4790 PC with 8GB RAM. Meanwhile, all codes were
received from the original authors and were implemented in
MATLAB 2016a. It is clear that GMSD is the fastest, fol-
lowed by SSIM. However, their performances are quite poor.
The running speed of the proposed method is similar to
FSIM. Although the average running time of PFSI is rela-
tively high, it maintains the highest prediction accuracy than
the other IQA models.

F. Parameters Setting

There are some parameters that need to be set in the
proposed method PFSI. C1, C2, C3 and C4 are for stability
when the denominator is closer to zero. In our experiments,
we find that the prediction accuracy of PFSI is relatively
insensitive to the choice of Ci (i = 1, 2, 3, 4) for the
TID2013 database. In fact, we can reach the same conclusion
on other databases. Fig. 7 plots the SROCC curves against
Ci (i = 1, 2, 3, 4) by applying PFSI to the TID2013 database.
As can be seen from Fig. 7(a), SROCC changes slightly

Fig. 7. The performance of PFSI in terms of SROCC vs. constant Ci(i =
1, 2, 3, 4) on TID2013 database.

when C1 = 0.6, 6, 60 and 600. Fig. 7(b)-(d) also shows
similar results. For that, we set C1 = 0.6, C2 = 2000,
C3 = 1.7 and C4 = 200. Moreover, for the RF regression
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TABLE VII
THE INFORMATION ABOUT PARAMETERS SETTING ON EACH DATABASE

tool, we adopt a default setting for the number of trees
(ntree) and variables per level (mtry); i.e., these two param-
eters are taken as (ntree, mtry) = (500, 3). The radial
basis function (RBF) is chosen for support vector regres-
sion; the penalty parameter C and kernel parameter are set
to be (C, γ ) = (31.1304, 29.0028) on TID2013, (C, γ ) =
(24.6066, 6.6165) on TID2008, (C, γ ) = (2.5432, 3.2589) on
CSIQ, (C, γ ) = (100, 5.7719) on LIVE and (C, γ ) =
(18.2299, 0.94845) on CCID2014. The information regarding
the parameter setting on each database is listed on Table VII.

V. CONCLUSION

In this paper, an effective and reliable image quality assess-
ment is proposed, namely, PFSI, which combines spatial and
frequency domain features. The local structure map, which
highlighted differences with details, is a combination of the
GM and PC maps. Afterward, we take the Log-Gabor fil-
ter and spatial frequency as complementary aspects of image
quality to reflect texture and CSF in the frequency domain.
Finally, the random forest (RF) employs a regression tool to
predict overall quality scores by effective mapping of distor-
tion effects. Extensive experimental results on five publicly
available databases indicate that the proposed method can
highly agree with subjective perceptions and outperforms all
the state-of-the-art IQA metrics since we combine existing
approaches to overcome the limitations of a single approach.
The performance on the cross database validation demonstrates
that the proposed approach maintains effectiveness and robust-
ness. The source code of the proposed metric will be publicly
available.
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